Getting Started With Dynamic Modeling in FLAC3D
Online
2025年5月13日 - 2025年5月14日

This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensive understanding of each step involved, including model setup, boundary conditions, input signal application, and damping, to effectively analyze dynamic behavior in geotechnical simulations.


Python in Itasca Software
Online
2025年6月11日 - 2025年6月12日

IMAT Training: Revolutionizing Mining Analysis with Seismology & Numerical Modeling
Minneapolis, Minnesota, United States
2025年6月16日 - 2025年6月18日

Explore IMAT’s latest upgrade, uniting open-pit and underground mining capabilities for faster, smarter, and more efficient modeling.


Fluid Flow through Jointed Rock

As well as flow through joints, 3DEC 5.2 is capable of simulating fluid flow through the blocks or the matrix (i.e., between the joints). It is assumed that the blocks represent a saturated, permeable solid, such as soil or fractured rock mass.

Bonded Block Model with Cable Ground Support

Cable elements in 3DEC may be assigned a tensile yield force limit and an axial rupture strain in order to simulate cable rupture. 3DEC can also simulate the shearing resistance along the cable length between the grout and either the cable or the host material.

FLAC3D 6.0 Model Generation using the Building Blocks and Geometric Data Sets

Simulation of Three-Dimensional Pore-Pressure Distribution for Slope-Stability Analysis

A 3D groundwater flow model was constructed using MINEDW [1] to simulate pore pressure at the Chuquicamata open pit mine slope in Chile.

The nexus between groundwater modeling, pit lake chemogenesis and ecological risk from arsenic in the Getchell Main Pit, Nevada, U.S.A.

The proliferation of mine pits that intersect the groundwater table has engendered interest in environmental consequences of the lakes that form after cessation of dewatering.

Which fractures are imaged with Ground Penetrating Radar? Results from an experiment in the Äspö Hardrock Laboratory, Sweden

Identifying fractures in the subsurface is crucial for many geomechanical and hydrogeological applications. Here, we assess the ability of the Ground Penetrating Radar (GPR) method to image open fractures with sub-mm apertures in the context of future deep disposal of radioactive waste.

  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....

13 5月
Getting Started With Dynamic Modeling in FLAC3D
This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensiv...
11 6月
Python in Itasca Software
...
16 6月
IMAT Training: Revolutionizing Mining Analysis with Seismology & Numerical Modeling
Explore IMAT’s latest upgrade, uniting open-pit and underground mining capabilities for faster, smarter, and more efficient modeling....